miércoles, 6 de octubre de 2010


Conversión energética
El metabolismo celular está basado en la transformación de unas sustancias químicas, denominadas metabolitos, en otras; dichas reacciones químicas transcurren catalizadas mediante enzimas. Si bien buena parte del metabolismo sucede en el citosol, como la glucólisis, existen procesos específicos de orgánulos.[39]


Modelo de una mitocondria: 1, membrana interna; 2, membrana externa; 3, cresta mitocondrial; 4, matriz mitocondrial.Mitocondria: Las mitocondrias son orgánulos de aspecto, número y tamaño variable que intervienen en el ciclo de Krebs, fosforilación oxidativa y en la cadena de transporte de electrones de la respiración. Presentan una doble membrana, externa e interna, que dejan entre ellas un espacio perimitocondrial; la membrana interna, plegada en crestas hacia el interior de la matriz mitocondrial, posee una gran superficie. En su interior posee generalmente una sola molécula de ADN, el genoma mitocondrial, típicamente circular, así como ribosomas más semejantes a los bacterianos que a los eucariotas.[10] Según la teoría endosimbiótica, se asume que la primera protomitocondria era un tipo de proteobacteria.[47]

Estructura de un cloroplasto.Cloroplasto: Los cloroplastos son los orgánulos celulares que en los organismos eucariotas fotosintéticos se ocupan de la fotosíntesis. Están limitados por una envoltura formada por dos membranas concéntricas y contienen vesículas, los tilacoides, donde se encuentran organizados los pigmentos y demás moléculas implicadas en la conversión de la energía luminosa en energía química. Además de esta función, los plastidios intervienen en el metabolismo intermedio, produciendo energía y poder reductor, sintetizando bases púricas y pirimidínicas, algunos aminoácidos y todos los ácidos grasos. Además, en su interior es común la acumulación de sustancias de reserva, como el almidón.[10] Se considera que poseen analogía con las cianobacterias.[48]

Modelo de la estructura de un peroxisoma.Peroxisoma: Los peroxisomas son orgánulos muy comunes en forma de vesículas que contienen abundantes enzimas de tipo oxidasa y catalasa; de tan abundantes, es común que cristalicen en su interior. Estas enzimas cumplen funciones de detoxificación celular. Otras funciones de los peroxisomas son: las oxidaciones flavínicas generales, el catabolismo de las purinas, la beta-oxidación de los ácidos grasos, el ciclo del glioxilato, el metabolismo del ácido glicólico y la detoxificación en general.[10] Se forman de vesículas procedentes del retículo endoplasmático.[49]
Citoesqueleto
Artículo principal: Citoesqueleto
Las células poseen un andamiaje que permite el mantenimiento de su forma y estructura, pero más aún, éste es un sistema dinámico que interactúa con el resto de componentes celulares generando un alto grado de orden interno. Dicho andamiaje está formado por una serie de proteínas que se agrupan dando lugar a estructuras filamentosas que, mediante otras proteínas, interactúan entre ellas dando lugar a una especie de retículo. El mencionado andamiaje recibe el nombre de citoesqueleto, y sus elementos mayoritarios son: los microtúbulos, los microfilamentos y los filamentos intermedios.[1] [b]

Microfilamentos: Los microfilamentos o filamentos de actina están formados por una proteína globular, la actina, que puede polimerizar dando lugar a estructuras filiformes. Dicha actina se expresa en todas las células del cuerpo y especialmente en las musculares ya que está implicada en la contracción muscular, por interacción con la miosina. Además, posee lugares de unión a ATP, lo que dota a sus filamentos de polaridad.[50] Puede encontrarse en forma libre o polimerizarse en microfilamentos, que son esenciales para funciones celulares tan importantes como la movilidad y la contracción de la célula durante la división celular.[44]

Citoesqueleto eucariota: microfilamentos en rojo, microtúbulos en verde y núcleo en azul.Microtúbulos: Los microtúbulos son estructuras tubulares de 25 nm de diámetro exterior y unos 12 nm de diámetro interior, con longitudes que varían entre unos pocos nanómetros a micrómetros, que se originan en los centros organizadores de microtúbulos y que se extienden a lo largo de todo el citoplasma. Se hallan en las células eucariotas y están formadas por la polimerización de un dímero de dos proteínas globulares, la alfa y la beta tubulina. Las tubulinas poseen capacidad de unir GTP.[1] [44] Los microtúbulos intervienen en diversos procesos celulares que involucran desplazamiento de vesículas de secreción, movimiento de orgánulos, transporte intracelular de sustancias, así como en la división celular (mitosis y meiosis) y que, junto con los microfilamentos y los filamentos intermedios, forman el citoesqueleto. Además, constituyen la estructura interna de los cilios y los flagelos.[1] [44]
Filamentos intermedios: Los filamentos intermedios son componentes del citoesqueleto. Formados por agrupaciones de proteínas fibrosas, su nombre deriva de su diámetro, de 10 nm, menor que el de los microtúbulos, de 24 nm, pero mayor que el de los microfilamentos, de 7 nm. Son ubicuos en las células animales, y no existen en plantas ni hongos. Forman un grupo heterogéneo, clasificado en cinco familias: las queratinas, en células epiteliales; los neurofilamentos, en neuronas; los gliofilamentos, en células gliales; la desmina, en músculo liso y estriado; y la vimentina, en células derivadas del mesénquima.[10]

Micrografía al microscopio electrónico de barrido mostrando la superficie de células ciliadas del epitelio de los bronquiolos.Centríolos: Los centríolos son una pareja de estructuras que forman parte del citoesqueleto de células animales. Semejantes a cilindros huecos, están rodeados de un material proteico denso llamado material pericentriolar; todos ellos forman el centrosoma o centro organizador de microtúbulos que permiten la polimerización de microtúbulos de dímeros de tubulina que forman parte del citoesqueleto. Los centríolos se posicionan perpendicularmente entre sí. Sus funciones son participar en la mitosis, durante la cual generan el huso acromático, y en la citocinesis,[51] así como, se postula, intervenir en la nucleación de microtúbulos.[52] [53]
Cilios y flagelos: Se trata de especializaciones de la superficie celular con motilidad; con una estructura basada en agrupaciones de microtúbulos, ambos se diferencian en la mayor longitud y menor número de los flagelos, y en la mayor variabilidad de la estructura molecular de estos últimos.[10]
Ciclo vital
Artículo principal: Ciclo celular

Diagrama del ciclo celular: la intefase, en naranja, alberga a las fases G0, S y G1; la fase M, en cambio, únicamente consta de la mitosis y citocinesis, si la hubiere.El ciclo celular es el proceso ordenado y repetitivo en el tiempo mediante el cual una célula madre crece y se divide en dos células hijas. Las células que no se están dividiendo se encuentran en una fase conocida como G0, paralela al ciclo. La regulación del ciclo celular es esencial para el correcto funcionamiento de las células sanas, está claramente estructurado en fases[44]

El estado de no división o interfase. La célula realiza sus funciones específicas y, si está destinada a avanzar a la división celular, comienza por realizar la duplicación de su ADN.
El estado de división, llamado fase M, situación que comprende la mitosis y citocinesis. En algunas células la citocinesis no se produce, obteniéndose como resultado de la división una masa celular plurinucleada denominada plasmodio.[c]
A diferencia de lo que sucede en la mitosis, donde la dotación genética se mantiene, existe una variante de la división celular, propia de las células de la línea germinal, denominada meiosis. En ella, se reduce la dotación genética diploide, común a todas las células somáticas del organismo, a una haploide, esto es, con una sola copia del genoma. De este modo, la fusión, durante la fecundación, de dos gametos haploides procedentes de dos parentales distintos da como resultado un zigoto, un nuevo individuo, diploide, equivalente en dotación genética a sus padres.[54]



La interfase consta de tres estadios claramente definidos.[1] [44]
Fase G1: es la primera fase del ciclo celular, en la que existe crecimiento celular con síntesis de proteínas y de ARN. Es el período que trascurre entre el fin de una mitosis y el inicio de la síntesis de ADN. En él la célula dobla su tamaño y masa debido a la continua síntesis de todos sus componentes, como resultado de la expresión de los genes que codifican las proteínas responsables de su fenotipo particular.
Fase S: es la segunda fase del ciclo, en la que se produce la replicación o síntesis del ADN. Como resultado cada cromosoma se duplica y queda formado por dos cromátidas idénticas. Con la duplicación del ADN, el núcleo contiene el doble de proteínas nucleares y de ADN que al principio.
Fase G2: es la segunda fase de crecimiento del ciclo celular en la que continúa la síntesis de proteínas y ARN. Al final de este período se observa al microscopio cambios en la estructura celular, que indican el principio de la división celular. Termina cuando los cromosomas empiezan a condensarse al inicio de la mitosis.
La fase M es la fase de la división celular en la cual una célula progenitora se divide en dos células hijas hijas idénticas entre sí y a la madre. Esta fase incluye la mitosis, a su vez dividida en: profase, metafase, anafase, telofase; y la citocinesis, que se inicia ya en la telofase mitótica.
La incorrecta regulación del ciclo celular puede conducir a la aparición de células precancerígenas que, si no son inducidas al suicidio mediante apoptosis, puede dar lugar a la aparición de cáncer. Los fallos conducentes a dicha desregulación están relacionados con la genética celular: lo más común son las alteraciones en oncogenes, genes supresores de tumores y genes de reparación del ADN

No hay comentarios:

Publicar un comentario